skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pellechia, Perry J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Herein, we investigate supramolecular gelation behavior of a dendronized triphenylamine bis-urea macrocycle (1) in toluene in the presence and absence of sulfoxide chain stoppers. Macrocycle 1 assembles in the sol phase through intermolecular hy-drogen bonding interactions, spontaneously transitioning into a gel state when left undisturbed at room temperature. In tolu-ene, 1 displays a critical gelation concentration of 0.066 wt%, classifying it as a super-gelator. Furthermore, it exhibits a thermoreversible gel-sol phase transition as well as thixotropic behavior. Temperature-dependent 1H NMR spectroscopy is employed to probe the sol phase assembly of 1 with the size variations at different temperatures assessed by 2D DOSY. Rheological experiments at 10 °C were used to measure gelation response to mechanical stimuli. An amplitude sweep test highlights a linear viscoelastic region. Additionally, the self-healing behavior of gel 1 was verified through a series of strain cycles, where it showed complete recovery. Addition of chain stoppers 10% versus 1 of dimethyl sulfoxide (DMSO) and diphenyl sulfoxide (DPS) lead to weaker gels with smaller differences between the storage and the loss moduli. Rheological analysis revealed slower/partial recovery for the gel containing chain stoppers. Gels assembled from macrocyclic building blocks may retain homogeneous binding cavity and channels offering novel functional properties. 
    more » « less
  3. The ability to control molecular-scale motion using electrostatic interactions was demonstrated using an N -phenylsuccinimide molecular rotor with an electrostatic pyridyl-gate. Protonation of the pyridal-gate forms stabilizing electrostatic interactions in the transition state of the bond rotation process that lowers the rotational barrier and increases the rate of rotation by two orders of magnitude. Molecular modeling and energy decomposition analysis confirm the dominant role of attractive electrostatic interactions in lowering the bond rotation transition state. 
    more » « less
  4. null (Ed.)
    Carbon atom functionalization via generation of carbanions is the cornerstone of carborane chemistry. In this work, we report the synthesis and structural characterization of free ortho-carboranyl [C2B10H11]−, a three-dimensional inorganic analog of the elusive phenyl anion that features a “naked” carbanion center. The first example of a stable, discrete C(H)-deprotonated carborane anion was isolated as a completely separated ion pair with a crown ether-encapsulated potassium cation. An analogous approach led to the isolation and structural characterization of a doubly deprotonated 1,1′-bis(o-carborane) anion [C2B10H10]22−, which is the first example of a discrete molecular dicarbanion. These reactive carbanions are key intermediates in carbon vertex chemistry of carborane clusters. 
    more » « less
  5. A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯OC hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol −1 ) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯OC hydrogen bond (1.5 kcal mol −1 ). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms. 
    more » « less